We establish the precision with which we want to work

**options(digits = 7)**

we say we do not want to work in scientific notation

**options(scipen = 999)**

We declare vectors to store the values of the different variables

**I <- numeric();CA <<- numeric();SF <<- numeric()**

We give values for the amount, number of periods and interest rate

**M <- 2400000**

n <- 50

i <- 3.7/100

n <- 50

i <- 3.7/100

We create function:

**f.amort <- function(M,i,n) {**

R <<- M*i/(((1 + i)**n)-1)

I[1] <<- 0

I[2] <<- R*i

CA[1] <<- R

SF[1] <<- R

for (k in 1:(n-1)) {

CA[k+1] <<- R + I[k+1]

SF[k+1] <<- SF[k] + CA[k+1]

if (k < n-1){

I[k+2] <<- SF[k+1]*i

}

}

}

R <<- M*i/(((1 + i)**n)-1)

I[1] <<- 0

I[2] <<- R*i

CA[1] <<- R

SF[1] <<- R

for (k in 1:(n-1)) {

CA[k+1] <<- R + I[k+1]

SF[k+1] <<- SF[k] + CA[k+1]

if (k < n-1){

I[k+2] <<- SF[k+1]*i

}

}

}

**f.amort(M, i, n)**

tabla <- cbind(I,CA,SF)

rtotal <- R*n

totales <- c(rtotal,sum(I),sum(CA),000)

renta <- c(R, recursive=TRUE)

tabla <- cbind(renta, tabla)

tabla <- rbind(tabla, totales)

colnames(tabla) <- c("Rent","Interest","

tabla <- cbind(I,CA,SF)

rtotal <- R*n

totales <- c(rtotal,sum(I),sum(CA),000)

renta <- c(R, recursive=TRUE)

tabla <- cbind(renta, tabla)

tabla <- rbind(tabla, totales)

colnames(tabla) <- c("Rent","Interest","

**Accumulated Amount", "**

**Closing Balance")**

You can get the script in:

https://github.com/pakinja/-Financial-Mathematics-in-R/blob/master/AmortizationFund.r